CAPACITIVE TOUCH LED LAMP

PRODUCT CODE: M00270043

DESCRIPTION: The LED would be switched
Read before installation:
Put the component on the side of screen printing and solder on the back of PCB without printing.
Placing direction of component
On component, longer leg is " + "
2. On PCB marking, spuare pad as Figure 1 is always "+
3.
For diode, please install as Figure
4. For Votage Regulator, please place the component as Figure 5

Do not put the LED to very botom, just install as Figure 3. Also, just keep around 6 pieces of wasted legs of LED after cutting out (Figure 3).
For any IC, finding out which leg is first leg (FIGURE 4) is important. Also, soldder the socket (chair) to the PCB and the IC Sit on the top
For
simiav Battery Adaptor, Red is B+ and Black is B-Also, please tie a knot after the red and black wire has passed the neighbors hole before soldering. This is

FIGURE 1	DIRECTION OF MARKING ON PCB FIGURE 2	
THE FIRST LEG OF IC IS KNOWN FROM THE DIRECTION OF "U" EDGE OFIC. FIGURE 4	FIGURE 5	FIGURE 6
VARIABLE RESISTOR FIGURE 7	\bigcirc TRANSISTOR BY LOOKING AT THE TOP FIGURE 8	3.5 mm MONO JACK SOCKET FIGURE 9
FIGURE 10		

CIRCUIT EXPLANATION:
Prease read the below together with the circuit diagram in Figure 11 . Because human body can be assume this is a capacitor and behave as a lititle "earth". We can use this characteristic to trigger the swith for turning on any electric

3. \quad Part 2 is a current sensing circuit. The output voltage of leg of of of UB W would rise when there i is any increasing current flowat t R.

 of 9 of U2C, the output of leg of 8 of U2C would become low.

installation:

ITEM	SYMBOLON PCB	DESCRIPTION	OUTLOOK	DIRECTION IS IMPORTANT?
1	R1	RESIISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
2	R2	RESISTOR, 10 K ohms	BROWN, BLACK, ORANGE	NO
3	R3	RESISTOR, 10K ohms	BROWN, BLACK, ORANGE	NO
4	R4	RESIITOR, 10K ohms	BROWN, BLACK, ORANGE	NO
5	R5	RESISTOR, 10K ohms	BROWN, BLACK, ORANGE	NO
6	R6	RESISTOR, 1M ohms	BROWN, BLACK, GREEN	NO
7	R7	RESISTOR, 1M ohms	BROWN, BLACK, GREEN	NO
8	R8	RESISTOR, IM ohms	BROWN, BLACK, GREEN	NO
9	R9	RESISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
10	R10	RESISTOR, 1M ohms	BROWN, BLACK, GREEN	NO
11	R11	RESISTOR, 1M ohms	BROWN, BLACK, GREEN	NO
12	R12	RESISTOR, IM ohms	BROWN, BLACK, GREEN	NO
13	R13	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
14	R14	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	No
15	R15	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
16	R16	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
17	R17	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	No
18	R18	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
19	R19	RESISTOR, 1K ohms	BROWN, BLACK, RED	NO
20	R20	RESISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
21	R21	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
22	R22	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
23	R23	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
24	R24	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
25	R25	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
26	R26	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
27	R27	RESISTOR, 1 K ohms	BROWN, BLACK, RED	NO
28	D1	DIODE, IN4001	FIGURE 2 (MOSTLY BLACK)	FIGURE 2
29	D2	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
30	D3	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
31	C1	CAPACITOR, 0.1 IUF	MARK WITH 0.1uF OR SAME MEANING OF VALUE	YES
32	C2	CAPACITOR, 0.33uF	MARK WITH 0.33uF OR SAME MEANING OF VALUE	YES
33	C3	CAPACITOR, 10*10E2PF	MARK WITH 102 OR SAME MEANING OF VALUE	NO
34	C4	CAPACITOR, $10 * 10 \mathrm{E} 3 \mathrm{PF}$	MARK WITH 103 OR SAME MEANING OF VALUE	NO
35	C5	CAPACITOR, 10*10E4pF	MARK WITH 104 OR SAME MEANING OF VALUE	NO
36	C6	CAPACITOR, 10*10E3PF	MARK WITH 103 OR SAME MEANING OF VALUE	NO
37	Q1	TRANSISTOR, NPN	FIGURE 8	YES
38	Q2	TRANSISTOR, NPN	FIGURE8	YES
39	Q3	TRANSISTOR, NPN	FIGURE 8	YES
40	L1	LED	ONE LONG LEG AND ONE SHORT LEG	YES
41	L2	LED	ONE LONG LEG AND ONE SHORT LEG	YES
42	L3	LED	ONE LONG LEG AND ONE SHORT LEG	YES
43	L4	LED	ONE LONG LEG AND ONE SHORT LEG	YES
44	L5	LED	ONE LONG LEG AND ONE SHORT LEG	YES
45	L6	LED	ONE LONG LEG AND ONE SHORT LEG	YES
46	L7	LED	ONE LONG LEG AND ONE SHORT LEG	YES
47	L8	LED	ONE LONG LEG AND ONE SHORT LEG	YES
48	L9	LED	ONE LONG LEG AND ONE SHORT LEG	YES
49	L10	LED	ONE LONG LEG AND ONE SHORT LEG	YES
50	L11	LED	ONE LONG LEG AND ONE SHORT LEG	YES
51	L12	LED	ONE LONG LEG AND ONE SHORT LEG	YES
52	U1	DIP 14 SOCKET	14 LEGS	NO
53	U2	DIP 14 SOCKET	14 LEGS	NO
54	VR	VARIABLE RESISTOR, 1M ohms	FIGURE 7	NO
55	DCJACK	3.5mm MONO JACK SOCKET	FIGURE9	YES
56	B+, B-	9V BATTERY ADAPTOR	RED WIRE, BLACK WIRE	YES
57	VRE	VOLTAGE REGULATOR, LM7805	FIGURE 5	FIGURE 5
58	${ }^{\text {ON THE TOP OF TTEM }}$	IC, 4013	14 LEGS	YES
59	$\underset{53}{\text { ON THE TOP OF ITEM }}$	IC, LM324	${ }^{14}$ LEGS	YES
60	M00260042	THIS IS A SWITCH	A SMALL RECTANGLE PCB	READ BELOW

- After you have finished the soldering the component from 1 to 59 of above table, now you need to solder the PCB M00260042 to M00260074 as Figure 10 by using the wasted leg of LED.

After you have finished the soldering the component from 1 to 59 of above table, now you need to solder the PCB MOO260042 to M00260074 as Figure 10 by using the wasted leg of LED.
After you have installed all the component in above, now we need to turn this to working condition. Because the user may not have an oscilloscope, we would use the stupid method to adjust this equipment.
When you connect this lampto the powers the LLDED is eititer al "ON" or "OFF".
Turn the item 54 , VR, to e either clockwise or anti-clockwise direction ontil you heard some the sound of "clip clip". The "clip clip" mean you have turn the VR to the max or min of its resistance value. Turn maybe $1 / 2$ cycle of VR in opposite direction.

5 Go back to step 3 until you can activate the LED by only touching the green pat of PCB MOO2
CIRCUIT DIAGRAM:

