# DUAL RAIL VARIABLE DC POWER SUPPLY

### PRODUCT CODE: M00270037

DESCRIPTION: Positive and negative variable DC power supply from a gentle single rail DC power supply or battery.

# READ BEFORE INSTALLATION:

- Put the component on the side of screen printing and solder on the back of PCB without printing.
- Placing direction of component.
- On component, longer leg is "+"
- On PCB marking, square pad as Figure 1 is always "+".
- For diode, please install as Figure 2.
- Do not put the LED to very bottom, just install as Figure 3.
- For any IC, finding out which leg is first leg (FIGURE 4) is important. Also, solder the socket (chair) to the PCB and the IC sit on the top.
  - For 9V Battery Adaptor, Red is B+ and Black is B-. Also, please tie a knot after the red and black wire has passed the neighbors hole before soldering. This is similar to Figure 6.



## CIRCUIT EXPLANATION:

Please read the below together with the circuit diagram in Figure 13.

The dual rail power supply is to make sure the voltage different on either rail would not be changed due to resistance change on another rail. This is different to gentle voltage divider circuit formed by two resistors. How to do this? Please check on part 1. Now 1 say the output is "+" (Arrow in the picture 13), earth and "-" (Ground in picture 13). We connect 10K resistor between "+" and earth and 100K resistor between earth and "-". I assume there is 0.1A is flowing at 10K resistor. For keeping the voltage the same also at 100K resistor, then 0.01A must flow at 100K resistor. For test of current 0.09A of current originally flow at 100K has gone to "-", through Q2.

The function of U1A is voltage control circuit for both rails. You can see there is a feedback from the earth of output. This feedback is important because this monitor the output

The function of U1A is voltage control circuit for both rails. You can see there is a feedback from the earth of output. This feedback is important because this monitor the output voltage on real time. This feedback voltage compares the wanted voltage set by V1 and V2. Finally, the U1A would decide which transistor Q1 or Q2 should be open or close more so that the voltage level is stable on both rails whatever what resistor is connected. For example, when leg 3 is little higher than leg 2, leg 1 would be little higher. Then Q1 would open more and Q2 would close more. You can understand as the control of gate for amount of current flow at each rail.

By using dual power supply, mostly we want same voltage at both sides. This is done by part 2. V1 is for major adjustment and V2 is for minor adjustment. When you have adjusted the voltage the same on rails, leg 5 and leg 6 would be the same. The output of leg 7 would be around the middle of "+" and "-", then L1 and L2 would be at "ON" at both sides. Sometime you would see the voltage is not the same (Little different) on both sides even both LED is on. The main reason is that R1 and R2 have maybe 5% of error.

Part 3 is for inputting the DC voltage. D1 is to prevent the wrong connecting of voltage supply.

#### CIRCUIT DIAGRAM:



#### INSTALLATION:

Just install the component to the PCB M00260062 according to below table.

| ITEM | SYMBOL ON PCB     | DESCRIPTION                  | OUTLOOK                                      | DIRECTION IS<br>IMPORTANT? |
|------|-------------------|------------------------------|----------------------------------------------|----------------------------|
| 1    | R1                | RESISTOR, 10K ohms           | BROWN, BLACK, ORANGE                         | NO                         |
| 2    | R2                | RESISTOR, 10K ohms           | BROWN, BLACK, ORANGE                         | NO                         |
| 3    | R3                | RESISTOR, 330 ohms           | ORANGE, ORANGE BROWN                         | NO                         |
| 4    | R4                | RESISTOR, 10K ohms           | BROWN, BLACK, ORANGE                         | NO                         |
| 5    | R5                | RESISTOR, 330 ohms           | ORANGE, ORANGE BROWN                         | NO                         |
| 6    | R6                | RESISTOR, 10K ohms           | BROWN, BLACK, ORANGE                         | NO                         |
| 7    | R7                | RESISTOR, 10K ohms           | BROWN, BLACK, ORANGE                         | NO                         |
| 8    | D1                | DIODE, IN4001                | FIGURE 2                                     | FIGURE 2                   |
| 9    | C1                | CAPACITOR, 22*10E4 pF        | MARK WITH 224 OR SAME MEANING OF VALUE       | NO                         |
| 10   | C2                | CAPACITOR, 22*10E4 pF        | MARK WITH 224 OR SAME MEANING OF VALUE       | NO                         |
| 11   | C3                | CAPACITOR, 22*10E4 pF        | MARK WITH 224 OR SAME MEANING OF VALUE       | NO                         |
| 12   | C4                | CAPACITOR, 22*10E4 pF        | MARK WITH 224 OR SAME MEANING OF VALUE       | NO                         |
| 13   | C5                | CAPACITOR, 1000uF            | MARK WITH 1000uF OR SAME MEANING OF<br>VALUE | YES                        |
| 14   | C6                | CAPACITOR, 1000uF            | MARK WITH 1000uF OR SAME MEANING OF<br>VALUE | YES                        |
| 15   | C7                | CAPACITOR, 100uF             | MARK WITH 100uF OR SAME MEANING OF<br>VALUE  | YES                        |
| 16   | U1                | DIP 8 SOCKET                 | 8 LEGS                                       | NO                         |
| 17   | L1                | LED                          | RED                                          | YES                        |
| 18   | L2                | LED                          | YELLOW                                       | YES                        |
| 19   | V1                | VARIABLE RESISTOR, 1M ohms   | FIGURE 11                                    | YES                        |
| 20   | V2                | VARIABLE RESISTOR, 100K ohms | FIGURE 12                                    | NO                         |
| 21   | Q1                | TRANSISTOR, NPN              | FIGURE 5, MARK WITH TIP41                    | YES                        |
| 22   | Q2                | TRANSISTOR, PNP              | FIGURE 5, MARK WITH TIP42                    | YES                        |
| 23   | Q3                | TRANSISTOR, NPN              | FIGURE 9, MARK WITH 9014                     | YES                        |
| 24   | Q4                | TRANSISTOR, PNP              | FIGURE 9, MARK WITH 9015                     | YES                        |
| 25   | INPUT             | AS INPUT POWER               | FIGURE 7                                     | NOTE 1                     |
| 26   | OUTPUT            | AS OUTPUT POWER              | FIGURE 8                                     | NOTE 1                     |
| 27   | SWITCH            | SLIDE SWITCH                 | SIX LEGS                                     | FIGURE 10                  |
| 28   | ON TOP OF ITEM 16 | IC, LM358                    | 8 LEGS                                       | FIGURE 4                   |

Note 1: You can say there are two directions to solder this component. Both are work but this is better the terminal is facing outside the PCB.