FLASHING STAR WITH STYLE ADJUSTMENT

PRODUCT CODE: M00270030
DESCRIPTION: Four resistors in the star are
READ BEFORE INSTALLATION:

- Put the component on the side of screen printing and solder on the back of PCB without printing.

Placing iriection of componen,
On component longer leg is + "
On PCB
2. On PCB marking, square pad as Figure 1 is always " + ".
\quad - Do not put hhe LED ot very botom, just install as Figure 3.

- For 9 V Battery Adaptor, Red is $\mathrm{B}+$ and Black is B-. Also, please tie a knot ater the red and black wire has passed Ihe neighbors hole before soldering. This is

This is + FIGURE 1	DIRECTION OF MARKING ON PCB FIGURE 2	FIGURE 3
THE FIRST LEG OF IC IS KNOWN FROM THE DIRECTION OF "U" EDGE OF IC. FIGURE 4	\square TRANSISTOR BY LOOKING AT THE TOP FIGURE 5	FIGURE 6
VARIABLE RESISTOR FIGURE 7	FIGURE 8	3.5 mm MONO JACK SOCKET FIGURE 9

CIRCUIT EXPLANATION:
Part 1 is the se scillatoro of the circuit and this is a also the control of the period of "ON" and "OFF" of the circuit (FIGURE 10)
: When Leg 1 of U1A is high, C1 would charge through VR1 and D1. VR1 is to contro the rate of charging. \quad When Leg 1 of U1A is low, C1 would discharge through D2 and VR2. Then finally go back to Leg 1 of U1A. VR2 is to control the rate of discharge.

- Leg is higher than Leg S. The feedback circuit in above finally would control the period of "ON" and "OfF" of the whole circuit.
 But adding this part can make you easier to understand part 1 can only control the rate
Part 3 work as a buffer circuit so that this can isolate ethe circuit before and after this.

The above in both are to control the rate of fading ""N" and "OUT"
can isolate the circuit before and after this. The Leg 12 of U1D is to sense the voltage of C2 during the time Part 6 would light up all the LED from L1 to L 7 when the voltage of emitter of 01 is iow. The brightness is depending on how low the emitter is. This, in fact, depends on the result of part 4.
Part 7 would light up all the LED from L8 to L 14 when the voltage of emitter of Q 2 is high. The brightesss is depending on how high the emitter is. This, in fact, depends on Part 8 is the circuit for power supply. D5 is to preventing reverse power supply. C3 is to make the whole circuit working at stable voltage.
installation:

ITEM	SYMBOL ON PCB	DESCRIPTION	OUTLOOK	DIRECTION IS IMPORTANT?
1	R1	RESISTOR, 10K ohms	BROWN, BLACK, ORANGE	NO
2	R2	RESISTOR, 10K ohms	BROWN, BLACK, ORANGE	NO
3	R3	RESISTOR, 10K ohms	BROWN, BLACK, ORANGE	NO
4	R4	RESISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
5	R5	RESISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
6	R6	RESISTOR, 100K ohms	BROWN, BLACK, YELLOW	NO
7	R7	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	No
	R8	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
9	R9	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
10	R10	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
11	R11	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
12	R12	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
13	R13	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
14	R14	RESISTOR, 1K ohms	BROWN, BLACK, RED	NO
15	R15	RESISTOR, IK ohms	BROWN, BLACK, RED	NO
16	R16	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
17	R17	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
18	R18	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
19	R19	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
20	R20	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
21	R21	RESISTOR, 330 ohms	ORANGE, ORANGE BROWN	NO
22	R22	RESIITOR, 330 ohms	ORANGE, ORANGE BROWN	NO
23	D1	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
24	D2	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
25	D3	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
26	D4	DIODE, IN4148	FIGURE 2 (MOSTLY TRANSPARAENT RED)	FIGURE 2
27	D5	DIODE, IN4001	FIGURE 2 MOSTLY BLACK)	FIGURE 2
28	L1	LED	ONE LONG LEG AND ONE SHORT LEG	YES
29	L2	LED	ONE LONG LEG AND ONE SHORT LEG	YES
30	L3	LED	ONE LONG LEG AND ONE SHORT LEG	YES
31	L4	LED	ONE LONG LEG AND ONE SHORT LEG	YES
32	L5	LED	ONE LONG LEEG AND ONE SHORT LEG	YES
33	L6	LED	ONE LONG LEG AND ONE SHORT LEG	YES
34	L7	LED	ONE LONG LEG AND ONE SHORT LEG	YES
35	L8	LED	ONE LONG LEEG AND ONE SHORT LEG	YES
36	L9	LED	ONE LONG LEG AND ONE SHORT LEG	YES
37	L10	LED	ONE LONG LEG AND ONE SHORT LEG	YES
38	L11	LED	ONE LONG LEG AND ONE SHORT LEG	YES
39	L12	LED	ONE LONG LEEG AND ONE SHORT LEG	YES
40	L13	LED	ONE LONG LEG AND ONE SHORT LEG	YES
41	L14	LED	ONE LONG LEG AND ONE SHORT LEG	YES
42	VR1	VARIABLE RESIITOR, IM ohms	FIGURE 7	NO
43	VR2	VARIABLE RESISTOR, IM ohms	FIGURE 7	NO
44	VR3	VARIABLE RESISTOR, 1M ohms	FIGURE 7	NO
45	VR4	VARIABLE RESISTOR, 1 M ohms	FIGURE 7	NO
46	Q1	TRANSISTOR, PNP	FIGURE 5, 9012 IS MARKED ON THE COMPONENT	YES
47	Q2	TRANSISTOR, NPN	FIGURE 5, 9014 IS MARKED ON THE COMPONENT	YES
48	U1	DIP 14 SOCKET	14 LEGS	NO
49	C1	CAPACITOR, 10uF	MARK WITH 10uF OR SAME MEANING OF VALUE	YES
50	C2	CAPACITOR, 10uF	MARK WTTH 10uF OR SAME MEANING OF VALUE	YES
51	C3	CAPACITOR, 10uF	MARK WITH 10uF OR SAME MEANING OF VALUE	YES
52	SWITCH	SLIDE SWITCH	SIX LEGS	FIGURE8
53	DCJACK	3.5mm MONO JACK SOCKET	FIGURE 9	YES
54	B + , C -	9 V BATTERY ADAPTOR	RED WIRE, BLACK WIRE	YES
55	$\underset{\substack{\text { ON THE TOP OF } \\ \text { ITEM } 48}}{\text { is }}$	IC, LM324	${ }^{14}$ LEGS	FIGURE 4

